
Conquest
— order N ab initio Electronic Structure
simulation code for quantum mechanical
modelling in large scale

Lianheng Tong

Fortran Expo: 15 Jun 2012

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Overview

• Overview of Conquest project

• Brief Introduction to DFT

• Structure of Conquest

• Parallelisation and Linear Scaling

• Applications

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Conquest

• Density Functional Theory Code: simulating electronic
structures of materials

• Linear Scaling

• Written in Fortran 90

• Pure MPI parallelisation at moment, OpenMP+MPI hybrid
in works

• Available as BETA release on HPC platforms: HECToR, K-
Computer, NIMS simulator

• Supported by dCSE, HECToR

• Website: http://www.order-n.org/

http://www.order-n.org
http://www.order-n.org

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Developers

• David Bowler (UCL)

• Lianheng Tong (UCL)

• Conn O'Rourke (UCL)

• Umberto Terranova
(UCL)

• Veronika Brazdova
(UCL)

• Mike Gillan (UCL)

• Lionel Truflandier
(Bordeaux, France)

• Tsuyoshi Miyazaki
(NIMS, Japan)

• Michiaki Arita (NIMS,
Japan)

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Density Functional Theory

• Nano-scale: Quantum Mechanics becomes important.

• Solving Schrödinger equation

• Multiparticle wavefunction approach: Number of
parameters:

• Ground state electron charge density enough to fully
system — Density Functional Theory (DFT). Nobel Price
in Chemistry 1998.

Ĥψ(r) = Eψ(r)

M = p3N , 3 ≤ p ≤ 10

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Density Functional Theory

• To find Ground state energy, instead of solving

• We write:

and minimise the total energy with respect to density .

• Practical to work with Hamiltonian

and minimise

Ĥψ(r) = Eψ(r)

ρ(r)

EKS = EK[ρ(r)] + EH[ρ(r)] + Exc[ρ(r)] + Epseudo([ρ(r)],Ri) + Eion(Ri,Rj)

E = tr(ρH)

H = −1

2
∇2 +VH +Vxc +Vpseudo, VX =

δEX

δρ(r)

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Conquest

• We use density matrix

• We work directly with it using support functions

• Locality imposed via radius of support functions and
cutoff on

• Support functions represented by basis functions

ρ(r1, r2) =
�

iαjβ

φiα(r1)K
iαjβφjβ(r2)

ρ(r1, r2) =
�

n

fnψn(r1)ψ
∗
n(r2), ρ(r) = ρ(r, r)

φiα =
�

n

Cn
iαχ

n(r)

Kiαjβ

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Basis Sets

• We now have two basis sets in Conquest:

• Blips (piece-wise cubic splines defined on a grid
moving with atoms)

• Pseudo Atomic Orbitals, PAOs (radial term multiplied
by spherical harmonic)

• PAOs allow many analytic or local calculations (efficient)

• Blips allow systematically improving basis set

θ0(x) =






1− 3
2x

2 + 3
4 |x|

3 if 0 < |x| < 1
1
4 (2− |x|)3 if 1 < |x| < 2

0 if 2 < |x|
Θ (r) = θ0(x)θ0(y)θ0(z)

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Minimisation Procedures

• Three levels:

• Innermost loop: minimise w.r.t.

• Middle loop: seek self-consistent charge and potential

• Outer loop: minimise energy w.r.t. basis set—vary

E = tr(KH) K

Cn
iα

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Linear Scaling

• Normal DFT calculations: Cost is of order to

• Large systems: needs linear ordering

• Localisation is key: everything must have finite range

• Density is local:

• We impose:

• Interactions are ranged

N3

ρ(r1, r2) → 0, �r1 − r2� → ∞
ρ(r1, r2) = 0, �r1 − r2� ≥ Rcut

N2

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Linear Scaling

• In practice each atom has a
halo

• Support functions are
strictly local

• Only non-zero matrix
elements are stored.

• Sparse matrix multiplication

i j k

Liαjβ �= 0

Ljβkγ �= 0

Liαkγ = 0

Rcut = max(|Rhalo
i −Rhalo

j |)

Haloφiα(r) = 0, �r−Ri� ≥ Rφ
c

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Parallelisation

• There are three main areas in Conquest

• Integration (on 3D integration/FFT grid)

• Matrix multiplication

• FFTs (on 3D integration/FFT grid)

Siαjβ =

�
d3rφiα(r)φjβ(r)

Hiαjβ =

�
d3rφiα(r)Ĥφjβ(r)

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Parallelisation: Integration/FFT grid

• Grid divided into blocks (for
efficiency)

• Space divided into partitions, each
partition is then allocated to a
node

• Set of all blocks in charge by a
node is called a domain

• A node stores value of all support
functions at grid points within its
domain

• Each node is responsible for
partial contributions to all integrals
(matrix elements) involving
support functions touching its
domain. Calculations are local

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Parallelisation: Matrices
• Divides space into partitions,

each partition has a set of
atoms

• Each node in charge of a set of
partitions, and hence a set of
atoms

• Matrix distributed to nodes
according rows associated to
the atoms in charge

• Results of integrations need to
be redistributed to follow
matrix format

• Matrix multiplication needs
data fetch from other nodes

Ciα
jβ =

�
kγ A

iα
kγB

kγ
jβ

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Strong Scaling

• Ge hut cluster
on Si(001)
surface

• 11,620 atoms
in unit cell

• Using between
16 to 512
cores

Figure 1: (left) Strong scaling for Ge hut cluster on Si(001) with 11,620 atoms in unit cell,

using between 16 and 512 cores. (middle) Strong scaling for Ge hut cluster on Si(001) with

22,346 atoms, using between 64 and 288 cores. Efficiency is defined as actual speed up

divided by increase in number of cores. (right) Weak scaling for bulk silicon cells with 512

atoms per core, increasing number of cores. Note that the time plotted is total time–i.e.

summed over all cores. The system demonstrates perfect linear scaling, while time per core

is invariant, indicating excellent parallelization.

References

[1] D. R. Bowler, T. Miyazaki, and M. J. Gillan. Comp. Phys. Commun. 137, 255 (2001).

[2] D. Alfè. Comput. Phys. Commun. 118, 31 (1999).

[3] A. M. N. Niklasson, C. J. Tymczak, and M. Challacombe. Phys. Rev. Lett. 97, 123001

(2006).

[4] A. M. N. Niklasson. Phys. Rev. Lett. 100, 123004 (2008).

[5] X. Li, C. Moss, W. Liang, et al. J. Chem. Phys. 130, 234115 (2009). 10.1063/1.3155082.

[6] A. M. N. Niklasson, M. Challacombe, C. J. Tymczak, et al. J. Chem. Phys. 132, 124104

(2010).

[7] T. Otsuka, T. Miyazaki, T. Ohno, et al. J. Phys.: Condens. Matter 20, 294201 (2008).

7

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Weak Scaling

• 512 Si atoms per core
(memory limited)

• Four support
functions per basis
function, slightly corse
grid

• Self-consistency done
for small cells

• Graph shows total
time (sum of times on
each core) 1 10 100 1000

Increase in size

1

10

100

1000

In
cr

ea
se

 i
n
 t

im
e

10
4

10
5

10
6

Atoms

10
5

10
6

10
7

T
o
ta

l
ti

m
e

(s
)

10
4

10
5

10
6

Atoms

10
3

10
4

10
5

E
n
er

g
y
 (

H
a)

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Million Atoms DFT

Atoms Time/core (s) Energy (Ha) Cores

4,096 7068.878 -308.268 8

32,768 6893.759 -2,466.150 64

262,144 6931.418 -19,729.202 512

2,097,152 7032.496 -157,833.618 4096

HECToR Phase 2a

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

• Dimyristoyl-sn-glycero-
phosphocholine

• Phospholipid that
incorporates choline as
head group.

• Important part of cell
membrane

• Hydrophilic heads in outer
surfaces of the bilayer,
hydrophobic in between.

• gramicidin A ion channel
allows selective ions
(mono-valency cations) to
pass through cell
membrane

• Over 15000 atoms, full
DFT (SCF) calculation

Ca

 DMPC!

Water

Water

gA

Cl

Na

Michiaki Arita and Tsuyoshi Miyazaki, 2011

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

DMPC-gA in Water

• Basis: Optimised SZP from DZP (using diagonalisation,
piece-wise)

• XC Functional: PBE(+D2)

• Cores: 512, NIMS Simulator 1

• Intel Xeon processor Nehalem-EP (2.8 GHz), 4 cores/
node, 2.85GB per core

• SCF computation time: < 24 Hrs

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Summary

• Presented some details of Conquest

• Linear scaling DFT code

• Excellent scaling on HPC platforms

• Capable of performing full quantum mechanical
calculations on millions of atom

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Summary

• On Fortran 90

• Reasons we choose Fortran 90

• HPC platforms supports Fortran or C

• Compatibility with existing libraries

• Array arithmetics

• Modules, interfaces and also optional variables

• Issues (personal experiences)

• Some compilers can be too forgiving

• Allows F77 syntax, which some times can lead to confusion

• Question: automatic arrays vs. allocatable arrays—stack or
heap?

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Acknowledgements

• Conquest: David Bowler, Tsuyoshi Miyazaki, Mike Gillan

• Funding:

• EPSRC

• HECToR (NAG) dCSE

Lianheng Tong, BCS Fortran Expo, 15 Jun 2012

Thank You!

