
Technical Report on further
interoperability with C

John Reid, ISO Fortran Convener,
JKR Associates and

Rutherford Appleton Laboratory

Fortran 2003 (or 2008) provides for
interoperability of procedures with non-
optional arguments that are scalars,
explicit-shape arrays, or assumed-size
arrays, but not with arguments that are
assumed-shape, allocatable, pointer, or
optional.

We summarize the present draft of a
Technical Report that is intended to fill this
gap and allow C fuctions to accept
arguments of any rank or any type.

BCS Fortran Specialist Group
London, 30 September 2010.

C header file

The C header file ISO_Fortran_binding.h
provides the C programmer with standardized C
structs, macro definitions, and C prototypes for C
functions to allow access in C to additional
Fortran features.

Type for bounds and strides

The struct type CFI_dim_t has components:

size_t lower_bound Lower bound of an array
in a given dimension.

size_t extent Extent of an array in a given
dimension.

size_t sm Stride multiplier (distance in bytes
between successive elements) in a given
dimension.

2

C descriptor

A C descriptor for an object is a struct of the type
CFI_cdesc_t. This type has components:

void * base_addr C address of the first element
of the object. NULL if unallocated or not
associated.

size_t elem_len The sizeof() of an element
of the object.

int rank Rank of the object.

int type Code (see slide on macros) for the type
of the object.

int attribute Code (see slide on macros) to
indicate whether the object is allocatable, a
pointer, assumed-shape, or otherwise.

CFI_dim_t dim[CFI_MAX_RANK] Lower bounds,
extents, and stride multipliers.

3

The new calling mechanism

A dummy argument in a Fortran interface that is
allocatable, assumed-shape, or a pointer may
correspond to a formal parameter in a C prototype
that is a pointer to C descriptor.

When calling the C function from Fortran, a
suitable C descriptor is provided by the system.

4

Assumed-rank object

A dummy argument in an interface may be of
assumed rank. E.g.
interface

subroutine scale(a)
real a (..)

end subroutine scale
end interface

It may correspond to a pointer to a C descriptor
in a C function prototype.

Allows a C function to accept an allocatable,
assumed-shape, or a pointer array of any rank.

5

Assumed-type objects

A dummy argument may be of assumed type. E.g.
interface

subroutine archive(a)
type(*) a

end subroutine archive
end interface

Allows a C function to accept an allocatable,
assumed-shape, or a pointer array of any type.

If it is not allocatable, assumed-shape, assumed-
rank, or a pointer, it may correspond to a pointer
to void in a C function prototype.

Allows a C function to accept a Fortran object of
any type. Helpful for calling MPI.

Optional arguments

An absent actual argument in a reference is
indicated by a formal parameter with the value
NULL.

6

Macros

The following macros evaluate to an integer
constant:

CFI_MAX_RANK : Largest rank supported.

Attribute codes:
CFI_attribute_assumed : assumed-shape
CFI_attribute_allocatable : allocatable
CFI_attribute_pointer : pointer

Type codes:
CFI_type_struct : interoperable struct
CFI_type_signed_char : signed char
CFI_type_short : short
CFI_type_int : int
CFI_type_float : float
CFI_type_double : double
CFI_type_cptr : void *
CFI_type_cfunptr : pointer to a function
... Lots more types.

7

Functions for allocation and deallocation

int CFI_allocate (CFI_cdesc_t *,
const CFI_bounds_t bounds[]);

int CFI_deallocate (CFI_cdesc_t *);

Allocates or deallocates memory for an object by
the mechanism of the Fortran allocate or
deallocate statement.

The type CFI_bounds_t is a struct type with
components
size_t lower_bound : lower bound
size_t upper_bound : upper bound
size_t stride_bound : stride

For CFI_allocate, the stride values are
ignored.

No mixing of C and Fortran allocation
mechanisms is allowed.

8

Function for testing contiguity
int CFI_is_contiguous

(const CFI_cdesc_t *,
_Bool * result);

result is set to true or false according to
whether the object is contiguous.

Function that puts bounds in a C descriptor
int CFI_bounds_to_cdesc

(const CFI_bounds_t bounds[],
CFI_cdesc_t *);

Function that gets bounds from a C descriptor
int CFI_cdesc_to_bounds

(const CFI_cdesc_t * ,
CFI_bounds_t bounds[]);

9

What is left to do

Objectives were set out in N1820. I think we still
need to address

R1. Enable a C programmer to conveniently
obtain the address of an element of a C
descriptor array.

R2. Enable explicit declaration in a C function of
the type or rank of an assumed-shape,
allocatable, or pointer object.

R8b. A mechanism for C function to create an
array that it can use as an actual argument
corresponding to an assumed-shape dummy.

R9d. Permit INTENT(OUT) ALLOCATABLE dummy
arguments in a BIND(C) routine.

C6. Do not allow Fortran or C to deallocate
pointers associated with a target by the other.

10

Report from the Convener

Fortran 2008

The FDIS for Fortran 2008 has been approved
18-0-15. No more changes are permitted and
we can expect publication by November.

Fortran 2003 corrigenda

An unofficial fifth corrigendum for Fortran
2003 has been constructed and an unofficial
merged corrigendum, too.

TR on further interoperability with C

WG5 activity in the next few months will be
focussed on the TR on further interoperability
with C. At the SC22 plenary, I asked for a
year’s extension, since without an extension
the slightest slippage would lead to
cancellation of the work item. No further
extension is permissible.

11

TR on further coarray features

WG5 is committed to a TR containing those
coarray features that were deleted in 2008.
However, it would be foolish not to consider
alternatives and I have started discussion with
a paper on requirements, N1835. WG5 expects
to decide on the technical content of the TR at
its meeting in June 2011.

Part 3 of the Fortran Standard

Part 3 of the Fortran Standard has been
confirmed following its systematic review.
WG5 discussions have favoured withdrawal
since there has only ever been one
implementation. I therefore asked SC22 to
request a JTC1 country ballot for withdrawal.

12

TR on enhanced module facilities

The TR on enhanced module facilities has been
confirmed following its systematic review.
Since its features are incorporated in Fortran
2008, I asked SC22 to request a JTC1 country
ballot for withdrawal once the new Standard is
published.

13

References

Draft TR on further interoperability:
www.j3-fortran.org/doc/year/10/10-165r2.pdf

Reid, John (2010). The new features of Fortran
2008. ISO/IEC/JTC1/SC22/ WG5 N1828, see
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850

WG5(2010). FDIS revision of the Fortran
Standard. ISO/IEC/JTC1/SC22/ WG5 N1830,
see ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850

14

