
Following by chance in the Masters’ foot prints
T.L. van Raalte

 One’s attitudes to anything new is a function of its inherent qualities and
one’s own background. So I will start from a bit further back than April
1957 to explain my use of FORTRAN.

 My first experience of computing was trying to program optical designs
on a Ferranti Mk I* in 1951 or 1952 at the Ministry of Supply, Fort
Halstead, and later at AWRE (now AWE) Aldermaston. (Dates may be
unreliable as I was not allowed to keep my working papers on my retirement
20 years ago.)

 The Mk I* had 768 words of memory but this was not as generous as it
sounds. Each numerical datum occupied 2 words. The memory included a
routine for division, entry to which used 2 or 3 words, and a creaking
mechanism which provided only one level of subroutine and used 4 words to
do it. In addition the range of numbers was from -2 to just less than +2, so
scaling was as much a problem as the problem itself. Programming was
done using a 5 bit code: if I remember correctly 11011 was multiply, and so
on.

 I soon realised that programming wasn’t as easy as expected and I needed
help, so I invited a colleague, June Stanley, to become a programmer. I
demonstrated a counted loop and one that iterated to a solution, gave her a
copy of the 32 instructions, and she joined me as a fully qualified
programmer on my second attempt to design lenses. At that time we were
the only members of AWRE outside the Theoretical Physics Division
allowed to use their facilities.

 At some stage the Mk I* was closed down and we moved to the IBM 704
which offered the unbelievable luxury of floating-point arithmetic in the
unfillable space of 4K. My delight in such opulence was tempered by the
realisation that in time the 704 would also be replaced and this might
involve reprogramming again.

 So when I was introduced to the first version of FORTRAN in 1957 (as a
“novelty” by the AWRE programming adviser, and as a “joke” by the IBM
manager who shook his head and added ‘It’s amazing what they can make a

computer do’) I was quite excited. So long as something like FORTRAN
was provided on subsequent computers I could see a far simpler future. This
was not a universal reaction to FORTRAN. Some programmers had a rather
macho attitude to programming and FORTRAN was definitely for wimps.
One complaint was that FORTRAN didn’t allow one to write programs in a
sneaky way, and another that it didn’t call for the exercise of one’s
professional skills; anybody could write programs in FORTRAN.

 True, the first FORTRAN lacked a formal subroutine mechanism but to
anyone who had survived the do-it-yourself way the Mk I*, the
COMPUTED GO TO was a splendid way of writing subroutines (in the
plural) and nested as deeply as needed.

 June and I produced a program that contributed to the design of some
lenses but politics dictated that the projected automatic optimisation would
never be completed. British nuclear atmospheric tests ceased and part of the
Trials Division became watch-dogs seeking methods of detecting other
nations’ tests against the various backgrounds of natural events. At the same
time the restrictions on “outside” users of the computer were lifted and most
of the scientists and engineers at AWRE became FORTRAN programmers.

 Having programmed at the bit level on the Mk I* and by the Symbolic
Assembly Program on the 704, June and I acquired a good understanding of
the code that the FORTRAN compiler produced. And because we had been
using computers for some years by then novice programmers in difficulty
tended to turn to us for help, and we acquired very flattering reputations for
finding errors in programs. In fact, of course, it was very rare that we did
anything of the sort, but knowing how the compiler would treat code enabled
us to ask the questions that led the authors to find the faults themselves.
Fortunately they never seemed to realise it. I say fortunately not just
because it’s nice to be regarded (even if wrongly) as particularly gifted, but
because it exposed us to a wide range of problems and it was this experience
that defined the future direction of my work.

 I’m sure that other people at the Anniversary Meeting will deal with
popular problems in detail so I will just briefly mention four that I
remember. Two were genuine bugs. One was a subroutine defined with an
integer argument that was increased by 1 during its execution and was called
with the constant 1, so that thereafter 1 had become 2. The other was the
statement DO 20 I=1,10 typed as DO 20 I=1.10 a fault that achieved some

notoriety years later in an Apollo mission. Two others were correct
programs which seemed to simply fade away in the 2 minute slots in which
they ran. One was a nest of DO loops so deeply nested that the core code
would have been repeated millions of times. The other was a program with
so many exponentials that page after page looked like star maps with
assignments containing expressions like (A**2.0+B**2.0)**0.5. It ran in
seconds when simplified.

 Just before I come to the commonest errors I will add a personal note. In
the Theoretical Physics Division the task of fault finding was done by Ian
Smith. June and Ian now married, are at the Anniversary Meeting.

 I don’t know whether Ian’s experience with professional mathematicians
was the same as June’s and mine with electrical and mechanical engineers.
For me the great surprise was that on the whole they could cope with
calculations (not always written in ways most sympathetic to the compiler as
shown above) but they stumbled in the most imaginative ways over
DIMENSIONs, FORMATs, and EQUIVALENCEs. The result was either
the repeated rewriting and recompiling of input routines or the error prone
process of editing the data.

 My background becomes relevant again. I was a mathematician but I
nearly became a social anthropologist and out of work hours I was closely
connected with the anthropological fraternity. Anthropology includes
linguistics and linguistics had introduced me to a thrilling and seminal work
– number 4 in the Janua Linguarum series published around 1956 by
Mouton and Co.: Syntactic structures by Noam Chomsky. This slim
booklet explains how humans understand the most complicated language
and possibly malformed sentences and the contrast with computing struck
me dramatically. A program can be as complicated and clever as you like
but put a decimal point where it doesn’t expect one and it crashes.

 The implication is simple. Data defined syntactically could be read with
the format (say of) 120A1 and then analysed in the computer. Each datum
identifies itself. Omitting some detail, a string of digits is an INTEGER;
one decimal point makes it REAL; a point and a capital E or D is floating
point; .T. or .TRUE. etc. are BOOLEAN, and anything else is alpha-
numeric. Nothing could go wrong: conforming data would be identified
and prepared for use and ungrammatical data could be treated in such a way
that the program would not crash.

 The first version did call for a format as part of the data. June and I had
learned better how to judge what we would achieve in a limited time, and as
I couldn’t get approval to develop my ideas officially we had to do so in
such spare time as we could create, so we didn’t try to do everything at once.
A later version treated embedded formats as the data equivalent of such
verbal punctuation as “y’know” in popular speech. An input giving the
array lengths became irrelevant but provided a useful check.

 Of course, what I was doing was not as novel as I thought at the time. I
have never (to my shame) read any of Dr. Backus’ papers but I realised later
that syntactic structures must have provided the foundation for FORTRAN
itself and what I was doing was merely applying to data what he had already
done to analysing code.

 In my definition a file consisted of a heading which identified the data
and an END statement. Between these could be any number of what I
called sheaves of data. A sheaf of data could contain any number of strings
or multiplexed strings of numbers in any form and with any spacing and any
number of so-called parameters were relevant to the data. These parameters
could be house-keeping things like the degree of multiplexing, or the length
of the strings, or experimental measurements such as instrumental settings
and sensitivities, the interval at which the wave form is digitised, and so on.
All of these strings and parameters are named and as the file is read
directories of names are built so that every parameter and every item in an
array is addressable.

 So the data is safely read. Now, what to do with it? A typical process is
to Fourier analyse a wave form, modify it by a transmission function and
finish with an inverse transform. But in some cases the data might need a
preliminary smoothing or the application of a tailor-made instrumental
correction peculiar to the particular recording instrument. A framework can
be constructed which is simply a series of calls to subroutines which perform
the various steps. In the case of instrumental corrections etc., appropriate
subroutines can be loaded. An interpreter then reads instructions and data
names and sets up pointers to collect the appropriate inputs and dispatch the
outputs to addresses whose names are added to the directories, for which
space is allocated. As mentioned before the program can include procedures
to handle ungrammatical data in a way appropriate to the location of the
error.

 A program of this sort is like a constructional toy such as MECCANO in
which a number of pre-formed pieces are selected from the toy box and a
new model is created. I cannot remember the devious way in which I made
the name MECCANO describe the program but it is now irrelevant as the
manufacturers (of MECCANO) refused my request to use the name.

 So I substituted the more succinct (and rather silly) name ICE which
stood for Input Controlled Execution – silly because very few programs are
not controlled by their input. It was around this time that June moved to
other fields and John Young joined me. He embraced the ideas of ICE
enthusiastically which was particularly refreshing as no one other than June
had had the slightest understanding of what I was doing. In particular my
various masters thought that ‘jam today’ (in the form of results produced at
whatever costs in manpower and wasted machine time) was worth more than
the promise of easily and efficiently produced ‘jam tomorrow’. So John and
I advanced ICE as much as our other commitments allowed. In fact, those
commitments produced some amazingly long-lasting programs – a credit to
the sound design of FORTRAN but also to the quality of John’s work, and
for an account of them see his contributions.

 As for me, I moved elsewhere later and finally produced a fully working
ICE2 with dynamic storage allocation (not then available in FORTRAN) in
Pascal. I am told that on my retirement ICE2 was wiped from the computer.

