
Fortran Compilers

David Padua
University of Illinois at Urbana-Champaign

2

The success and the glory of Fortran
are its compilers.

1. Introduction

3

"It was our belief that if FORTRAN, during its first
months, were to translate any reasonable "scientific"
source program into an object program only half as fast
as its hand coded counterpart, then acceptance of our
system would be in serious danger. This belief caused
us to regard the design of the translator as the real
challenge, not the simple task of designing the
language. ... To this day I believe that our emphasis on
object program efficiency rather than on language
design was basically correct. I believe that has we failed
to produce efficient programs, the widespread use of
language like FORTRAN would have been seriously
delayed.”

John Backus
FORTRAN I, II, and III
Annals of the History of Computing
Vol. 1, No 1, July 1979

4

• “Object programs produced by FORTRAN
will be nearly as efficient as those written
by good programmers.”

Programmer’s
Reference Manual
October 15, 1956

5

Developing effective Fortran compilers
was not easy and success was not
guaranteed.

6

“Like most of the early hardware and
software systems, Fortran was late in
delivery, and didn’t really work when it
was delivered. At first people thought it
would never be done. Then when it was
in field test, with many bugs, and with
some of the most important parts
unfinished, many thought it would never
work.

7

It gradually got to the point where a
program in Fortran had a reasonable
expectancy of compiling all the way
through and maybe even running. This
gradual change of status from an
experiment to a working system was true
of most compilers. It is stressed here in
the case of Fortran only because Fortran
is now almost taken for granted, as it were
built into the computer hardware.”

Saul Rosen
Programming Languages and

Systems
McGraw Hill 1967

8

2. The old compilers

• Early IBM Fortran compilers (Fortran I,
Fortran H) were engineering marvels.

• They introduced the seed of many
compiler techniques. These led in time to
powerful, general translation algorithms
which are among the most beautiful
creations of Computer Science.

9

2.1 Early techniques

• Fifty years ago, it was an open field.
Practically every issue was an open
problem.

• Early compiler algorithms were less
general than today’s algorithms

• Two examples next.

10

2.1.1 Operator priority
• “The lack of operator priority (often called

precedence or hierarchy) in the IT language was
the most frequent single cause of errors by
users of that compiler” D. Knuth

• The Fortran I compiler solution:
– Replace + and – with))+((and))-((
– Replace * and / with)*(and)/(, respectively
– Add ((and)) at the beginning and end resp. of

expressions and “sub expressions”
• “The resulting formula is properly parenthesized,

believe it or not” D. Knuth

11

2.1.2 DO loop optimizations
• One of the Fortran I compiler's main

objective was “to analyze the entire
structure of the program in order to
generate optimal code from DO
statements and references to subscripted
variables”.

• Much of this is accomplished today by
applying removal of loop invariants,
induction-variable detection, and strength
reduction.

12

• The Fortran I compiler applied a single
transformation that simultaneously moved
subexpressions involving loop indices to the
outermost possible loop level and applied
strength reduction.

• Only loop indices were recognized as induction
variables. “not practical to track down and
identify linear changes in subscripts resulting
from assignment statements”

13

2.2 Life and compilers were simpler then

• Fortran I was only 23,500 assembly
language instructions and was developed
by only 6 people over three years.

• Today’s compilers are much longer.
• Target machines were simpler: No caches,

no parallelism, no vector extensions.

14

3. Fortran compilers today
• “Pure” Fortran compilers are less common

today. Optimization passes are shared with
other languages.

• Today, machines have become more complex
– Vector extensions (SSE, Altivec)
– Parallelism (multicores)
– Caches

• Programs are more difficult to analyze due to
widespread use of pointers/references and other
factors.

15

3.1 How well do they work ?

• Evidence accumulated for many years show that
compilers today fail to meet our expectations.

• Problems at all levels:
– Detection of parallelism (numerical computing)
– Vectorization
– Locality enhancement
– Uniprocessor conventional optimization algorithms

(scalarization, cse, …)
• Today, most compilers include vectorization and

parallelization techniques, but no clear way
forward. Diminishing returns.

16

• Compilers for conventional languages
suffer because of
– Inaccurate program analysis
– Ad hoc optimization strategies
– Uneven implementations

3.2 Why ?

17

3.3 Improvements are needed

• With today’s compiler technology, most
likely, widespread parallelism will give us
performance at the expense of a dip in
productivity.

18

3.4 Today’s challenge

• We face a challenge similar to that of 1957.
• Like in the 1950s need to improve

programmability for performance. After all,
performance is what multicore is all about.

• Like in the 1950s there is much skepticism.
• Against progress in program optimization we

have
– The myth that the automatic optimization problem is

solved or insurmountable.
– The natural desire to work on fashionable problems

and “low hanging fruits”

19

• Perhaps the solution should resemble that of
Fortran I: Language/compiler co-design.

• And certainly solving the problem will be as
rewarding as it was for the Fortran I team:
“In any case the intellectual satisfaction of having
formulated and solved some difficult problems of
translation and the knowledge and experience
acquired in the process are themselves almost a
sufficient reward for the long effort expended on
the FORTRAN project.”

1957 Western Computer Proceeding
Paper on the Fortran I compiler

