
What will be in Fortran 2008
John Reid,

Convener ISO Fortran Working Group

Abstract

Following completion of the Fortran 2003
standard, WG5 decided that the next
revision would be minor and come out
five years later.

A preliminary choice of features (for the
first draft) was made in 2005 and the final
choice in 2006.

This talk aims to give an overview of
these features.

BCS Fortran
14 June 2007

2

Repository

ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/N1649.txt

Updated and simplified version in preparation:
ftp://ftp.nag.co.uk/sc22wg5/N1601-N1650/N1679.txt

Large items described on later slides
UK-01 Co-arrays for parallel programming
J3-47 BITS
J3-14 Intelligent macros

Medium items for enhanced performance
J3-43 Contiguous attribute
J3-46 DO CONCURRENT
Iterations of the loop are independent

Item in existing TR
Enhanced modules

Item to be developed as a TR
J3-41/2 Interoperability with C of pointers,
allocatables, assumed-shape arrays, and
optional arguments

3

Minor technical changes

J3-03 Execute external program

J3-13 Internal procedure as actual argument

J3-18 Non-null initial targets for pointers

J3-19 Extend intrinsics such as ASIN to
complex arguments

J3-38 Libm: Bessel, erf, gamma, hypot

J3-39 Rank plus co-rank limited to 15.

RU-03 Obsolescent: ENTRY

UK-05 Guarantee support of
selected_int_kind(18)

UK-11 Elemental procedures that are not pure

4

Co-arrays

SPMD – Single Program, Multiple Data

Replicated to a number of images

Number of images fixed during execution

Each image has its own set of variables

Images mostly execute asynchronously

Co-arrays have second set of subscripts in []
for access between images

Synchronization: sync all, sync team,
notify, query, allocate, critical construct

Collectives: co_all, co_any, ...

Intrinsics: this_image, num_images

Full summary:

ftp://ftp.nag.co.uk/sc22wg5/N1651-N1700/N1677.pdf

5

Example
real :: p[*]
if (this_image()==1) then
read(*,*) p
sync all

else
sync all
p = p[1]

end if

Implementation model
The compiler may arrange that a co-array
occupies the same set of addresses within each
image. Probably, same executable replicated to
each image.

Optimization
Between synchronizations, the compiler can
optimize as if the image is on its own, using its
temporary storage such as cache, registers, etc.

6

BITS

There will be a new intrinsic type, BITS. The
number of bits is specified by the kind type
parameter with default NUMERIC_STORAGE_SIZE.

Up to 4*NUMERIC_STORAGE_SIZE bits must be
supported. Processor may support more.

Concatenation operator // available.

==, /= available for bits with bits, real, integer, or
complex.

>, >=, <, <=, available for bits with bits, real, or
integer.

.AND., .OR., .XOR., .EQV., .NEQV. available
for bits with bits or integer.

.NOT. available for bits.

If the kinds differ, the shorter is padded on the
left with zeros.

7

Assignment to bits

Assignment to bits available from bits, real,
integer, or complex. If the kinds differ, digits on
the left are discarded or padded with zeros. For
types other than bits, the internal representation is
used.

Interoperability

There are 26 C types that are interoperable with
bits.

New intrinsics

Lots, including:

BITS(A [,KIND]) Conversion to bits type

MERGE_BITS (I,J,MASK) Merge bits under mask

SHIFTL (I, SHIFT) Left shift

LEADZ (I [,KIND]) Number of leading zero bits

POPCNT (I [,KIND]) Number of one bits

IALL(ARRAY,DIM[,MASK]) Bitwise AND of array elements

or IALL(ARRAY[,MASK])

8

Intelligent macros

‘Intelligent’ macros know about Fortran and are
scoped. Can create modules, types, procedures,
and sections of code.

Example of macro definition:
DEFINE MACRO :: single_linked_list(sl_type)

TYPE sl_type%%_list

sl_type :: value

TYPE(sl_type%%_list),POINTER :: next

END TYPE

END MACRO

and later macro expansion:
EXPAND single_linked_list(real)

where the EXPAND statement is replaced by the
sequence of statements

TYPE real_list

real :: value

TYPE(real_list),POINTER :: next

END TYPE

The %% are needed for token concatenation.

9

Annex 1. Reduction to take co-arrays back
roughly to the UK proposal

Disallow co-arrays as structure components.

Reduce the number of alternatives for
synchronization.

Remove the collectives.

Remove all use of the type image_team.

Require system to be homogeneous.

10

Annex 2. Why co-arrays should be part of
the Standard

More rigourous check for wrinkles.

Experience with TRs has not been happy.

Co-arrays have to be incorporated into the
compiler.

The co-array edits are scattered. Maintaining
them separately would not be practical.

